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Relation between stochastic resonance and synchronization of passages in a double-well syste

Mangal C. Mahato and A. M. Jayannavar
Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India

~Received 22 January 1997!

We calculate, numerically, the residence times~and their distribution! of a Brownian particle in a two-well
system under the action of a periodic, saw-tooth-type, external field. We define hysteresis in the system. The
hysteresis loop area is shown to be a good measure of synchronization of passages from one well to the other.
We establish a connection between this stochastic synchronization and stochastic resonance in the system.
@S1063-651X~97!16705-8#

PACS number~s!: 05.40.1j, 75.60.Ej, 82.20.Mj
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Nature, presumably, exploits the phenomena of stocha
resonance~SR! to its advantage@1,2# to tune in to a desired
signal. However, its discovery, initially as a theoretical i
vention to explain recurrence of ice ages@3,4#, is barely a
decade and half old. SR is a nonlinear phenomena whe
an input noise is partially rectified by the system to obt
enhanced output signal at the input signal frequency. I
reflected as a peak in the output signal-to-noise ratio a
function of input noise strength. The nature of the outp
signal in the nonlinear system, however, depends on
combined effect of the input signal and the input noise. Si
the input signal, in general, is often considered to be w
~subcritical!, in the absence of noise no output signal is o
tained. The output signal considered is an averaged effe
a large number of realizations of fluctuating forces~noise! in
combination with the input signal. The output signal, the
fore, may not have the same form as the input signal. H
ever, one expects the output signal to have its dominant t
scales of variation nearly synchronous with those of the in
signal. The degree of synchronization, however, will depe
on the noise strength as well as the input signal parame
It is, therefore, interesting to study how the output sig
becomes synchronized with the input signal, and, in part
lar, whether SR occurs exactly when there is maximum s
chronization between the two signals. In this work we sho
by calculating the residence time distributions in a perio
cally forced two-well potential, that there is a close conn
tion between these two phenomena.

We define hysteresis in a two-well system, as explain
below, such that its loop area is a good measure of sync
nization of passages from one well to the other under
influence of a Gaussian white noisef̂ (t) when subjected to
an external periodic fieldh(t). Just in order to make the
explanation simpler and more transparent, we define a
teresis loop from the distribution of first passages from o
well to the other.~The explanation may subsequently be si
ply carried through to the main part of this work where
residence time distribution is used.! The procedure is illus-
trated in Figs. 1~a!–1~d!. r(t) is the distribution of first-
passage timest from one well to the other@Fig. 1~b!#, ob-
tained by solving the overdamped Langevin equation

ṁ~ t !52
]U~m!

]m
1 f̂ ~ t ! ~1!
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numerically~for a large number of realizations!, where

U~m!52
a

2
m21

b

4
m42mh~ t ! ~2!

represents the two-well potential in the presence of an ex
nal field h(t) which is periodic in timet. The fluctuating
forces f̂ (t) satisfy ^ f̂ (t)&50 and^ f̂ (t) f̂ (t8)&52Dd(t2t8),
whereD is the strength of the noise. The sequence oft ’s is
then used to calculate the distributionr„h(t)… @Fig. 1~c!# of
field valuesh(t), at which first passages occur from the rig
well to the left one. Fromr„h(t)… we obtain the upper hal
of the hysteresis loopM (h) @Fig. 1~d!#,

M ~h!

hc
5122E

h

h0
r~h8!dh8, ~3!

the other half being obtained by symmetry@5#. Hereh0 is the
amplitude anduhcu is the minimum value of the fieldh(t)
@Fig. 1~a!# beyond which one of the two wells ofU(m)
disappears.

From Fig. 1~b! we see that the peaks ofr(t) occur peri-
odically, and are centered each time aroundh(t)52h0, at
which the potential barrier of passage from the right to
left well is the least. Now perfect synchronization of pa
sages would mean sharp (d function! periodic peaks in
r(t) with a periodicityT0 of h(t), so that just one sharp
peak appears ath52h0 in r„h(t)…. This case would yield a
rectangular hysteresis loop, with hence, the largest poss
area. On the other hand, if the passages take place all
randomly, for the other extreme case of least synchron
tion, r„h(t)… would be uniform, resulting in a hysteres
loop of zero area. The hysteresis loop area thus provide
measure of the degree of synchronization of passages. It
be noted that the calculation of the hysteresis loop autom
cally takes into account information buried inall the peaks
of the passage-time distributionr(t). It has earlier been
shown@5# that the hysteresis loop area so calculated acqu
a maximum as a function of the input noise strengthD, as
well as a function of the sweep rateuḣu ~equivalent to the
frequency! of a saw-tooth-type periodic input signal. W
now discuss our numerical experiment, wherein the ab
explanation for the measure of synchronization should ca
6266 © 1997 The American Physical Society
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55 6267BRIEF REPORTS
through, though not in as obvious a manner, from the r
dence time distributions in each of the two wells.

In order to obtain the residence time distributions,r1(t)
and r2(t) in each of the wells 1 and 2, respectively, w
monitor the trajectorym(t) of the particle@Eqs.~1! and~2!#
for a long time, and put markers on the time axis wheneve
passage from one well to the other takes place. We t
h(t) to be of the same form as in Fig. 1~a!, but with
h(t50)50. We consider the passage to take place onl
the trajectorym(t) crosses the inflexion point on the far sid
of the maximum of the potential barrier separating the t
wells. From the markers on the time axis we also obtain
jump field valuesh(t) for switching from one well to the
other, and hence the corresponding distributionsr12„h(t)…
andr21„h(t)…. Figures 2~a! and 2~b! show the typical plots of
r1(t) and r21(h), respectively. Notice that we have, now
calculatedr12(h), etc., properly so that the distribution

FIG. 1. ~a! The time variation of the external fieldh(t). ~b! The
first-passage-time distributionr(t). ~c! The passage field distribu
tion r(h). ~d! The corresponding hysteresis loop calculated fr
r(h), for h050.7hc and D50.3, and the period ofh(t),
T0528.0.
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spread over the entire period ofh(t), and includes both as
cending as well as descending parts ofh(t). It is now easy to
calculate the probabilitym2(h) that the trajectory lies in well
2 when the field valueh(t)5h, from the discrete equation

m2~h!5m2~h2Dh!2m2~h2Dh!r21~h!Dh

1m1~h2Dh!r12~h!Dh, ~4!

with negligibly small Dh, and similarly for m1(h)
512m2(h). We then calculate the hysteresis loopm(h)
5m2(h)2m1(h) iteratively that satisfies the closed loo
conditionm„h(t1T0)…5m„h(t)…. Figure 2~c! shows a typi-
cal ~asymptotically stationary! hysteresis loop. Please no
that the hysteresis loop need not be saturated for every c
in contrast to Fig. 1~d!. We now discuss results on the st
chastic synchronization~SS! of passages from the variatio
of hysteresis loop area as a function of noise strengthD, and
also as a function of sweep rateuḣu.

Throughout our calculation, we takea52.0 andb51.0 in
the expression forU(m), so that the barrier height whe
h(t)50 is 1. We takeh050.7hc and 0.9hc and calculate for
each of these cases the distributionsr1(t) andr2(t) and also
the passage field distributionsr12„h(t)… and r21„h(t)… for

FIG. 2. ~a! The residence time distributionr1(t) in the well 1.
~b! The passage field distributionr21(h) for passage from well 2 to
well 1. ~c! The corresponding hysteresis loopm(h) for h050.9hc
andD50.2, and period ofh(t), T0536.0.
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various values ofḣ. The results obtained for both the fie
amplitudes 0.7hc and 0.9hc have qualitatively similar trends
Figure 3 shows the variation of the hysteresis loop area
function of noise strengthD. We observe that the hysteres
loop area initially increases asD is increased from a sma
value, attains a maximum value atD5Dma , say, and then
decreases gradually asD is increased further. It shows that
D5Dma the output signal is most synchronized with the
put signalh(t). The hysteresis loop area is also found
show maximum as a function ofḣ @Fig. 3~b!#.

From the residence time distributions we calculate
Fourier transform, and each of the components are squar
obtain the power spectral density@6#. As expected, large
peaks are obtained at regular intervals. We calculate the
of the height of the first peak and the~background! noise
level at the same frequency. This signal-to-noise ratio~SNR!
is plotted in Fig. 4 as a function ofD. The errors in calcu-
lating the SNR are large mostly because of the arbitrarin
in fixing the ~low! background noise level. However, th
errors do not affect the general trends of our results. W
indeed, find SR in the usual sense of the SNR maxima.
terestingly, the value ofD5DSNR(ḣ), at which SR occurs, is

FIG. 3. Plots of~a! hysteresis loop areaA as a function ofD for

ḣ50.05hc (s), 0.1hc (h), 0.2hc (L), 0.4hc ~n!, and 0.6hc
(,); and~b! hysteresis loop areaA as a function of field sweep rat

ḣ for D50.1 (s), 0.15 (h), 0.2 (L), and 0.3 (n) for
h050.9hc . In this and in the rest of the figures, the lines joining t
points are only to guide the eye.

FIG. 4. Plots of the signal-to-noise ratio~SNR! as a function of

D, for ḣ/hc50.05 (s), 0.1 (h), 0.2 (L), 0.4 (n), 0.5 (v), 0.6
(,), and 0.72 (x), for h050.9hc .
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not the same as the value ofD5Dma(ḣ) at which the pas-
sages are the most synchronized. However,DSNR(ḣ) and
Dma(ḣ) are quite close, and they tend to become closer
ḣ→0, as shown in Fig. 5.~A finer examination to smaller
ḣ is beyond the computing power available to us.! SR and SS
are, thus,not unrelated@7,8#. SR may ,therefore, be a natur
manifestation of SS. Moreover, SR, defined as the maxim
of SNR, appears not only as a function of noise strengthD

butalsoas a function of the sweep rateḣ ~or equivalently the
frequency! of the external field~input signal! as shown in
Fig. 6 @cf. with Fig. 3~b!#.

In conclusion, we state that hysteresis loop area, whic
an average effect of all the peaks in the residence time
tribution, is a good measure of synchronization of passa
with the input signal. In an earlier work@7#, by taking the
only first few peaks, and in particular the first peak, of t
residence time distribution, SR was given an alternative

FIG. 5. Plots the peak positions of the plots of hysteresis lo
areaA vsD(s) and those of SNR vsD (h), for h050.7hc ~empty
symbols, solid joining lines! and for h050.9hc ~filled symbols,
dashed joining lines!.

FIG. 6. Shows SNR as a function ofḣ for h050.9hc , for vari-
ous values ofD50.1 (s), 0.15 (h), and 0.2 (L).
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scription, and was shown to be a bonafide resonance.
closer examination we find that rest of the peaks also play
important role. However, we concretize their assertion,
taking into accountall the peaks of the residence time di
tribution through the hysteresis loop area, that SR is a ge
sti
u

a

n
n
y

u-

ine resonance, at least in a double-well potential system,
is due to the synchronized response of the system to the i
periodic signal. Also, the degree of synchronization of p
sages and the SNR show maxima as a function of the sw
rate ~or, equivalently, the frequency! of the input signal@9#.
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