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Relation between stochastic resonance and synchronization of passages in a double-well system

Mangal C. Mahato and A. M. Jayannavar
Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India
(Received 22 January 1997

We calculate, numerically, the residence tinfasd their distributiohof a Brownian particle in a two-well
system under the action of a periodic, saw-tooth-type, external field. We define hysteresis in the system. The
hysteresis loop area is shown to be a good measure of synchronization of passages from one well to the other.
We establish a connection between this stochastic synchronization and stochastic resonance in the system.
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PACS numbes): 05.40+j, 75.60.Ej, 82.20.Mj

Nature, presumably, exploits the phenomena of stochastisumerically(for a large number of realizatiopsvhere
resonancéSR) to its advantagé¢l,2] to tune in to a desired
signal. However, its discovery, initially as a theoretical in- a b
vention to explain recurrence of ice age4|, is barely a U(m)=— §m2+ Zm“—mh(t) 2
decade and half old. SR is a nonlinear phenomena wherein
an input noise is partially rectified by the system to obtain L
enhanced output signal at the input signal frequency. It iePresents the two-well potential in the presence of an exter-
reflected as a peak in the output signal-to-noise ratio as 82! field h(t) which is periodic in timet. The fluctuating
function of input noise strength. The nature of the outputforcesf(t) satisfy (f(t))=0 and(f(t)f(t'))=2Ds(t—t’),
signal in the nonlinear system, however, depends on th@hereD is the strength of the noise. The sequence’sfis
combined effect of the input signal and the input noise. Sincéhen used to calculate the distributipth(7)) [Fig. 1(c)] of
the input signal, in general, is often considered to be wealkield valuesh(), at which first passages occur from the right
(subcritica), in the absence of noise no output signal is ob-well to the left one. Fronp(h(7)) we obtain the upper half
tained. The output signal considered is an averaged effect aff the hysteresis looM (h) [Fig. 1(d)],
a large number of realizations of fluctuating for¢aesise in
combination with the input signal. The output signal, there- M (h)
fore, may not have the same form as the input signal. How- h
ever, one expects the output signal to have its dominant time ¢
scales of variation nearly synchronous with those of the input
signal. The degree of synchronization, however, will dependhe other half being obtained by symmefB}. Hereh, is the
on the noise strength as well as the input signal parameterdmplitude andh| is the minimum value of the field(t)
It is, therefore, interesting to study how the output signallFig. 1(@)] beyond which one of the two wells dfi(m)
becomes synchronized with the input signal, and, in particudisappears.
lar, whether SR occurs exactly when there is maximum syn- From Fig. 1b) we see that the peaks p{r) occur peri-
chronization between the two signals. In this work we showodically, and are centered each time arolnft) = —h,, at
by calculating the residence time distributions in a periodi-which the potential barrier of passage from the right to the
cally forced two-well potential, that there is a close connecleft well is the least. Now perfect synchronization of pas-
tion between these two phenomena. sages would mean sharps (function periodic peaks in

We define hysteresis in a two-well system, as explaineg(7) with a periodicity T, of h(t), so that just one sharp
below, such that its loop area is a good measure of synchrgeak appears &= —hg in p(h(7)). This case would yield a
nization of passages from one well to the other under théectangular hysteresis loop, with hence, the largest possible
influence of a Gaussian white noié&t) when subjected to €@ On the other hand, if the passages take place all over
an external periodic fieldh(t). Just in order to make the randomly, for the other extreme case of least synchroniza-
explanation simpler and more transparent, we define a hygion. p(n(7)) would be uniform, resulting in a hysteresis
teresis loop from the distribution of first passages from ond@0p of zero area. The hysteresis loop area thus provides a
well to the other(The explanation may subsequently be sim-measure of the degree of synchronization of passages. Itis to
ply carried through to the main part of this work wherein P& noted that the calculation of the hysteresis loop automati-
residence time distribution is us¢dhe procedure is illus- Cally takes into account information buried afl the peaks
trated in Figs. a)—1(d). p(7) is the distribution of first- ©Of the passage-time distributiop(7). It has earlier been
passage times from one well to the othefFig. 1(b)], ob-  Shown[5] that the hysteresis loop area so calculated acquires
tained by solving the overdamped Langevin equation a maximum as a function of the input noise strenBthas

well as a function of the sweep rath| (equivalent to the
frequency of a saw-tooth-type periodic input signal. We

Ju(m) it (1) now discuss our numerical experiment, wherein the above

am explanation for the measure of synchronization should carry

:1—2fhh°p(h')dh', 6)

m(t)=—
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12 _ (b) The passage field distributigip,(h) for passage from well 2 to
ol -1 0 1 well 1. (c) The corresponding hysteresis loogh) for hy=0.%,
hh andD=0.2, and period oh(t), To=36.0.
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spread over the entire period bft), and includes both as-
FIG. 1. (a) The time variation of the external fiel(t). (b) The  cending as well as descending parthff). It is now easy to
first-passage-time distribution(7). (c) The passage field distribu- calculate the probabilityn,(h) that the trajectory lies in well
tion p(h). (d) The corresponding hysteresis loop calculated from2 when the field valuéa(t)=h, from the discrete equation
p(h), for hy=0.7h, and D=0.3, and the period ofh(t),

To=28.0. my(h)=my(h—Ah) —my(h—Ah)py(h) AR

through, though not in as obvious a manner, from the resi- +my(h—Ah)py(h)Ah, 4
dence time distributions in each of the two wells.

In order to obtain the residence time distributiopg(r) ~ With negligibly small Ah, and similarly for m,(h)
and p,(7) in each of the wells 1 and 2, respectively, we =1—my(h). We then calculate the hysteresis looyth)
monitor the trajectoryn(t) of the particle{Egs.(1) and(2)]  =M2(h)—my(h) iteratively that satisfies the closed loop
for a long time, and put markers on the time axis whenever &onditionm(h(t+To))=m(h(t)). Figure Zc) shows a typi-
passage from one well to the other takes place. We takeal (asymptotically stationajyhysteresis loop. Please note
h(t) to be of the same form as in Fig.(a, but with that the hysteresis loop need not be saturated for every case,
h(t=0)=0. We consider the passage to take place only ifin conjtrast to Fig. (). We now discuss results on the sto-
the trajectorym(t) crosses the inflexion point on the far side chastic synchronizatiofSS of passages from the variation
of the maximum of the potential barrier separating the twoOf hysteresis loop area as a function of noise strebgtand
wells. From the markers on the time axis we also obtain thalso as a function of sweep rafte.
jump field valuesh(t) for switching from one well to the Throughout our calculation, we take=2.0 andb=1.0 in
other, and hence the corresponding distributippgh(t))  the expression fotJ(m), so that the barrier height when
andp,;(h(t)). Figures 2a) and Zb) show the typical plots of h(t)=0 is 1. We takehy=0.7h, and 0.9 and calculate for
p1(7) and p,4(h), respectively. Notice that we have, now, each of these cases the distributigrét) andp,(t) and also
calculated p;5(h), etc., properly so that the distributions the passage field distributions,,(h(t)) and p,,(h(t)) for
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FIG. 3. Plots of(a) hysteresis loop area as a function oD for 01| ]
h=0.05, (O), 0.1h, (O), 0.2h, (¢), 0.4h, (A), and 0.6
(V); and(b) hysteresis loop area as a function of field sweep rate
h for D=0.1 ©), 015 @), 0.2 (), and 0.3 Q) for

hy=0.%.. In this and in the rest of the figures, the lines joining the 0.0 L w w

points are only to guide the eye. i
c

various values oh. The results obtained for both the field ~ FIG. 5. Plots the peak positions of the plots of hysteresis loop
amplitudes 0.f, and 0.9\, have qualitatively similar trends. @re@A vsD(O) and those of SNR vB (L), for ho=0.7. (empty
Figure 3 shows the variation of the hysteresis loop area as $Ympols, solid joining linesand for ho=0.%h. (filled symbols,
function of noise strengtl. We observe that the hysteresis 9ashed joining lines

loop area initially increases d3 is increased from a small

value, attains a maximum value Bt=D,,, say, and then not the same as the value Bf=D,,(h) at which the pas-
decreases gradually &sis increased further. It shows that at gages are the most synchronized. Howewg,(h) and

D =D, the output signal is most synchronized with the in- : :
put signalh(t). The hysteresis loop area is also found topma(h) are quite close, and they tend to become closer as

. S h—0, as shown in Fig. 5(A finer examination to smaller
show maximum as a function &f [Fig. 3(b)]. . ; .

From the residence time distributions we calculate thd! IS Peyond the computing power available to) &R and SS
Fourier transform, and each of the components are squared &€ thusnotunrelated7,8]. SR may ,therefore, be a natural
obtain the power spectral densif§]. As expected, large manifestation of SS. Moreover, SR, dgﬁned as the maximum
peaks are obtained at regular intervals. We calculate the ratf SNR, appears not only as a function of noise strerigth
of the height of the first peak and thbackgroungl noise  butalsoas a function of the sweep rate(or equivalently the
level at the same frequency. This signal-to-noise 8NR)  frequency of the external field(input signal as shown in
is plotted in Fig. 4 as a function db. The errors in calcu- Fig. 6 [cf. with Fig. 3b)].
lating the SNR are large mostly because of the arbitrariness In conclusion, we state that hysteresis loop area, which is
in fixing the (low) background noise level. However, the an average effect of all the peaks in the residence time dis-
errors do not affect the general trends of our results. Wefribution, is a good measure of synchronization of passages
indeed, find SR in the usual sense of the SNR maxima. Inwith the input signal. In an earlier worl], by taking the

terestingly, the value db = DSNR(h)v at which SR occurs, is only first few peaks, and in particular the first peak, of the
residence time distribution, SR was given an alternative de-
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FIG. 4. Plots of the signal-to-noise ratiSNR) as a function of
D, for h/h,=0.05 (O), 0.1 (), 0.2 (¢), 0.4 (A), 0.5 (<), 0.6 FIG. 6. Shows SNR as a function bffor hy=0.%h,, for vari-
(V), and 0.72 ), for hy=0.%,. ous values 0D =0.1 (O), 0.15 (@), and 0.2 (©).
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scription, and was shown to be a bonafide resonance. One resonance, at least in a double-well potential system, and
closer examination we find that rest of the peaks also play ais due to the synchronized response of the system to the input
important role. However, we concretize their assertion, byperiodic signal. Also, the degree of synchronization of pas-
taking into accountll the peaks of the residence time dis- sages and the SNR show maxima as a function of the sweep
tribution through the hysteresis loop area, that SR is a genuate (or, equivalently, the frequengyf the input signa[9].
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